Repository logo
  • English
  • Français
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Français
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Centre for Global Surgery
  3. Dr Royhaan-Folarin
  4. Chlorpyrifos- and Dichlorvos-Induced Oxidative and Neurogenic Damage Elicits Neuro-Cognitive Deficits and Increases Anxiety-Like Behavior in Wild-Type Rats
 
  • Details
Options

Chlorpyrifos- and Dichlorvos-Induced Oxidative and Neurogenic Damage Elicits Neuro-Cognitive Deficits and Increases Anxiety-Like Behavior in Wild-Type Rats

Journal
Toxics
ISSN
2305-6304
Date Issued
2018-12-01
Author(s)
Aminu Imam
Nafeesah Abdulkareem Sulaiman
Aboyeji Lukuman Oyewole
Samson Chengetanai
Victoria Williams
Musa Iyiola Ajibola
Royhaan Olamide Folarin
Asma’u Shehu Muhammad
Sheu-Tijani Toyin Shittu
Moyosore Salihu Ajao
DOI
10.3390/toxics6040071
Abstract
<jats:p>The execution of agricultural activities on an industrial scale has led to indiscriminate deposition of toxic xenobiotics, including organophosphates, in the biome. This has led to intoxication characterized by deleterious oxidative and neuronal changes. This study investigated the consequences of oxidative and neurogenic disruptions that follow exposure to a combination of two organophosphates, chlorpyrifos (CPF) and dichlorvos (DDVP), on neuro-cognitive performance and anxiety-like behaviors in rats. Thirty-two adult male Wistar rats (150–170 g) were randomly divided into four groups, orally exposed to normal saline (NS), DDVP (8.8 mg/kg), CPF (14.9 mg/kg), and DDVP + CPF for 14 consecutive days. On day 10 of exposure, anxiety-like behavior and amygdala-dependent fear learning were assessed using open field and elevated plus maze paradigms, respectively, while spatial working memory was assessed on day 14 in the Morris water maze paradigm, following three training trials on days 11, 12, and 13. On day 15, the rats were euthanized, and their brains excised, with the hippocampus and amygdala removed. Five of these samples were homogenized and centrifuged to analyze nitric oxide (NO) metabolites, total reactive oxygen species (ROS), and acetylcholinesterase (AChE) activity, and the other three were processed for histology (cresyl violet stain) and proliferative markers (Ki67 immunohistochemistry). Marked (p ≤0.05) loss in body weight, AChE depletion, and overproduction of both NO and ROS were observed after repeated exposure to individual and combined doses of CPF and DDVP. Insults from DDVP exposure appeared more severe owing to the observed greater losses in the body weights of exposed rats. There was also a significant (p ≤0.05) effect on the cognitive behaviors recorded from the exposed rats, and these deficits were related to the oxidative damage and neurogenic cell loss in the hippocampus and the amygdala of the exposed rats. Taken together, these results provided an insight that oxidative and neurogenic damage are central to the severity of neuro-cognitive dysfunction and increased anxiety-like behaviors that follow organophosphate poisoning.</jats:p>
Subjects

anxiety-related behav...

neurotoxicity

organophosphates

oxidative damage

spatial working memor...

File(s)
No Thumbnail Available
Name

toxics-06-00071.pdf

Size

5.6 MB

Format

Adobe PDF

Checksum

(MD5):dbde7fc43d73d372a6b1739926e94d0b

  • logo.footer.image.logo
  • grid-colum.footer.image.logo
Rwanda:

Office Hours: 8:00 a.m. - 5:00 p.m.
p: 0786.405.072
Kigali Heights, Plot 772
KG 7 Ave., 5th Floor
PO Box 6955
Kigali

United States:

Office Hours: 9:00 a.m. - 5:00 p.m.
800 Boylston Street, Suite 300
Boston, MA 02199

Connect with us:

View our privacy policy.

If you are interested in working for the university, please visit our job board for open positions.

To get in touch with UGHE, please send us an email.

Copyright © 2024, UGHE.org All Rights Reserved

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback