Options
Oxidative stress affects processing of amyloid precursor protein in vascular endothelial cells
Journal
PLOS ONE
ISSN
1932-6203
Date Issued
2017-06-15
Author(s)
Abebe Muche
Thomas Arendt
Reinhard Schliebs
Editor(s)
Zhongcong Xie
DOI
10.1371/journal.pone.0178127
Abstract
Background: Oxidative stress is thought to be a key player in the pathogenesis of neurodegenerative dementia, including Alzheimer's disease (AD). It has been assumed that oxidative stress contributes to the ß-amyloid deposition in cerebral blood vessels.
Methods: In order to prove this hypothesis, we examined the effect of oxidative stress on the processing of amyloid precursor protein (APP) in primary endothelial cells (EC) derived from cerebral cortical tissue of transgenic Tg2576 mice. Following exposure of EC by 1 μM hydrogen peroxide for up to 48 hours, formation and secretion of APP cleavage products sAPPα and sAPPß into the culture medium as well as the expression of endothelial APP were assessed.
Results: Oxidative stress resulted in enhanced secretion of sAPPß into the culture medium as compared to controls (absence of hydrogen peroxide), which was accompanied by an increased APP expression, induction of VEGF synthesis, nitric oxide and oxygen free radicals productions, and differential changes of endothelial phospo-p42/44 MAPK expression.
Conclusion: The data suggest that oxidative stress may represent a major risk factor in causing Aß deposition in the brain vascular system by initiating the amyloidogenic route of endothelial APP processing. The enhanced β-secretase activity following oxidative stress exposure, possibly promoted by phosphorylation of p42/44 MAPK.
Methods: In order to prove this hypothesis, we examined the effect of oxidative stress on the processing of amyloid precursor protein (APP) in primary endothelial cells (EC) derived from cerebral cortical tissue of transgenic Tg2576 mice. Following exposure of EC by 1 μM hydrogen peroxide for up to 48 hours, formation and secretion of APP cleavage products sAPPα and sAPPß into the culture medium as well as the expression of endothelial APP were assessed.
Results: Oxidative stress resulted in enhanced secretion of sAPPß into the culture medium as compared to controls (absence of hydrogen peroxide), which was accompanied by an increased APP expression, induction of VEGF synthesis, nitric oxide and oxygen free radicals productions, and differential changes of endothelial phospo-p42/44 MAPK expression.
Conclusion: The data suggest that oxidative stress may represent a major risk factor in causing Aß deposition in the brain vascular system by initiating the amyloidogenic route of endothelial APP processing. The enhanced β-secretase activity following oxidative stress exposure, possibly promoted by phosphorylation of p42/44 MAPK.
File(s)
No Thumbnail Available
Name
pone.0178127.pdf
Size
3.69 MB
Format
Adobe PDF
Checksum
(MD5):545f6c58750346b068292cc78ef3a096